
JOURNAL OF COMPUTATIONAL PHYSICS 103,33&349 (1992) 

A Primitive Variable Method for the Solution of 
Three- Dimensional Incompressible Viscous Flows 

F. SOTIROPOULOS* AND S. ABDALLAH 

Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221 

Received October 30, 1990; revised May 24, 1991 

In this paper we present a new primitive variable method for the 
solution of the three-dimensional, incompressible, Reynolds averaged 
Navier-Stokes equations in generalized curvilinear coordinates. The 
gOVerning equations are discretized on a non-staggered grid and the 
discrete continuity equation is replaced by a discrete pressure-Poisson 
equation. The discrete pressure equation is designed in such a way that: 
(i) the compatibility condition for the Poisson-Neumann problem is 
automatically satisfied, and (ii) the discrete incompresibility constraint 
is satisfied to, at least, truncation error accuracy while the computed 
pressure is smooth. The momentum equations are integrated in time 
using the four-stage Runge-Kutta algorithm while the pressure equa- 
tion is solved using the point-successive relaxation technique. The 
method is applied to calculate the turbulent flow field over a ship 
model. The computed results are in very good agreement with the 
experimental data. 0 1992 Academic Press, Inc 

INTRODUCTION 

There are two major difficulties associated with the 
numerical solution of the incompressible Navier-Stokes 
equations, in primitive form, on non-staggered grids: (i) the 
existence of a smooth solution for the pressure field, and 
(ii) the satisfaction of the discrete continuity equation to 
machine zero. It is well known, for instance, that on a non- 
staggered mesh the Neumann boundary conditions for the 
pressure should be implemented very carefully in order to 
satisfy the integral compatibility constraint and guarantee 
the existence of a unique solution for the pressure [l-3]. 
Moreover, an attempt to satisfy the discrete continuity 
equation to machine zero may lead to non-smooth solutions 
for the pressure (odd-even decoupling) [ 1,4], while the 
smoothness of the pressure field can be ensured at the 
expense of the discrete incompressibility constraint [l-5]. 

On the other hand, staggered grid primitive variable for- 
mulations-which have been extensively pursued by a large 
number of researchers [blO]--do not suffer, in general, 
from the difficulties which are inherent in the use of 
non-staggered computational meshes. However, when 
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generalized curvilinear coordinates are to be employed, the 
use of a staggered mesh increases considerably the storage 
requirements. This is because the metrics of the geometric 
transformation need to be computed and stored at the 
center (pressure nodes) as well as at the interfaces (velocity 
nodes) of each computational cell. This issue becomes 
particularly important in three-dimensional, high Reynolds 
number applications where large number of grid nodes are 
required for the accurate resolution of the flow field. 
Another difficulty, associated with the staggered mesh in 
curvilinear coordinates, arises from the fact that the 
discretization of the continuity equation requires the 
contravariant velocity components at the interfaces of 
the computational cell (velocity nodes). This problem can 
be overcome at the expense of either: (i) storage and com- 
plexity, by using contravariant coordinates [9], or (ii) 
accuracy, by employing physical coordinates (Cartesian, 
cylindrical, etc.) and interpolate to complete the calculation 
of the contravariant velocity components at the cell inter- 
faces [lo, 111. Finally, in generalized coordinates the use of 
a staggered mesh does not by default guarantee the smooth- 
ness of the computed pressure field. As discussed in 
Ref. [ 111, odd-even pressure oscillations may occur if the 
grid is highly clustered and special treatment of the discrete 
pressure operator is required in order to eliminate them. 

The above discussion suggests that the non-staggered 
mesh has several advantages, particularly in three-dimen- 
sional generalized coordinate systems, since it can reduce 
storage requirements and simplify the programming of a 
numerical method [12]. However, choosing to work with a 
non-staggered mesh requires a very careful treatment of the 
numerics in order to alleviate the difficulties associated with 
it (already discussed) and take advantage of its benefits. In 
Ref. [ 1] we addressed the difficulties related to the use of 
the pressure-Poisson approach on a non-staggered grid and 
we proposed an optimum way to derive a discrete pressure 
equation. The optimum-among the conventional non- 
staggered pressure-Poisson formulations [2, 3, 5]--discrete 
pressure equation [l] was designed to: (i) satisfy auto- 
matically the compatibility constraint, and (ii) minimize 
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the error in the discrete continuity equation with the com- 
puted pressure being smooth. However, our analysis was 
restricted to uniform, Cartesian grids. 

The main objective of the present paper is to use the ideas 
of Ref. [l] to develop a method for the solution of the 
incompressible Navier-Stokes equations in generalized 
curvilinear coordinates. The discrete continuity is satisfied, 
through the solution of a discrete pressure-Poisson equa- 
tion, up to an artificial source term. This artificial source 
term is at least second order (truncation error of the 
method) and its size is the minimum required to guarantee 
the smoothness of the computed pressure field. The momen- 
tum equations are integrated to steady state using the four 
stage explicit Runge-Kutta scheme [ 13]--enhanced with 
local time stepping and implicit residual smoothing [ 14]+ 
while the pressure equation is solved using the successive 
point relaxation method. The RungeeKutta scheme has 
been widely used for solving compressible [ 13, 151 as well 
as incompressible (in conjunction with the artificial com- 
pressibility method) [ 161 flowlields in two and three dimen- 
sions. Although explicit, it is a scheme that is competitive 
with implicit approximate factorization techniques (espe- 
cially in three dimensions) because: (i) it can be easily vec- 
torized and parallel processed, and (ii) the implementation 
of implicit residual smoothing allows the use of CFL 
numbers (Courant, Friedrich, and Lewis) similar to those 
used with multidimensional implicit schemes [16]. In the 
present study, the Runge-Kutta scheme is used for the first 
time in conjunction with the pressure-Poisson approach. 

To demonstrate the efficiency and the ability of 
the method to produce a smooth pressure field and a 
“practically” divergence-free velocity field in generalized 
curvilinear coordinates, we apply it to calculate the three- 
dimensional, turbulent flow field around a ship model 
(Wigley hull). The computed results are in very good agree- 
ment with the experimental data. 

GOVERNING EQUATIONS IN GENERALIZED 
CURVILINEAR COORDINATES 

The three-dimensional, time dependent, incompressible 
Reynolds averaged Navier-Stokes equations are written in 
cylindrical polar coordinates (x, r, r0) and then transformed 
to body fitted, generalized curvilinear coordinates (5, q, [). 
The Jacobian J and the contravariant metric tensor {g”} 
of the geometric transformation (x, r, r0) + ({, q, c) are 
defined as 

where (r’, t2, r3) + (5, v], [). The transformed governing 
equations, continuity and momentum, read as follows: 

Continuity equation, 

J[$(y)+-gg+$(y=o (2) 

Momentum equation, 

+H-J a&l + aE”2 aE”3 - - - ag all + ai 1 -H,=O. (3) 

In the above equation, Q is the velocity vector, 

Q = (u, 0, ~1’ (3.1) 

where U, u, and w are the axial, radial, and tangential 
velocity components, respectively. The matrices A, B, and 
C, in Eq. (3), are diagonal matrices defined as 

A = diag( U, U, U) 

B = diag( V, V, I’) 

C = diag( W, W, W), 

(3.2) 

where U, V, and W are the contravariant velocity 
components in the 5, q, and i directions, respectively, 

u’=ut:+~tt+~[~ for i= 1,2,3, Y (3.3) 

with (U’, U’, U’) + (U, V, W). The viscous flux vectors 
Eul, Ev2, and E,, which appear in the momentum equa- 
tion (3), read in compact notation as 

ED,=: 

for j = 1, 2, 3, (4) 

(1.1) where 

(4.1) 
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(4.2) 
time dependent momentum equations are integrated in time 
using the four-stage, explicit Runge-Kutta scheme. 
The pressure equation is solved by the point-successive 
relaxation method. SU=:!R,~+S:R,+S(~~:-w5:) (4.3) 

RiJ=u~5,,+u:,~,,+u;i.~, for i, j=l,2,3 (4.4) 

(241, u*, u’) -+ (u, v, w) (4.5) 

(Xl, x2, x3) + (4 t-2 0). (4.6) 

Finally, the source vectors H and H,,, in the momentum 
I ,  

equation (3), are given by the expressions: 

To discretize in space the momentum equations (3), we 
use three-point central finite differencing for the pressure 
gradient and viscous terms, while we employ second-order 
upwind differencing for the convective terms. The upwind 
differencing of the convective terms eliminates the need for 
adding artificial dissipation terms, to the right-hand side of 
the momentum equations, to stabilize the numerical 
algorithm. This is due to the fact that a fixed amount of 
dissipation is inherent in the upwind differencing. 

Referring to Fig. 1, we give discrete approximations of 
convective, pressure gradient and viscous terms, which 
appear in Eq. (3) as 

H= 1 (5) 
L. 

and au [ 1 "2 r,i,k 
=‘(l”z.,,kI + Ui,,,k)SiUi.l,k 

2 

H,= (6) 

Finally, v, is the total kinematic viscosity 

1 
v*=v,+&’ (7) 

where Re is the Reynolds number of the flow and v, is the 
eddy viscosity which is introduced through the Boussinesq’s 
hypothesis to model the Reynolds stresses. In the present 
work we compute the eddy viscosity using the algebraic 

(a) Discretization of the Governing Equations 

model of Baldwin and Lomax in its original form. The 
details of the model can be found in Ref. [ 171. 

Note that, although we use the pressure-Poisson 
approach to satisfy the continuity equation (2), we do not 
derive the pressure equation in this section. The reason is 
that we want to stress the importance of deriving a discrete 
pressure equation from the discrete approximations of 
Eqs. (2) and (3). The derivation of the discrete pressure 
equation is given in the following sections. 

NUMERICAL SOLUTION PROCEDURE 

In this section we present a method to integrate numeri- 
cally the three-dimensional equations from an initial guess 
to a steady state. The governing equations (2) and (3) are 
discretized on a non-staggered grid and the continuity equa- 
tion is replaced by a Poisson equation for the pressure. The 

e 1-2 

FIG. 1. Three-dimensional computational cell. 

(8) 
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where 

‘t( )i,i.k= ‘& Ih3( )i,j,k+4( )i+l,j,k-( )i+z,j,k] 

(8.1) 

‘t( )i,j,k = & CC Ii+ 1,j.k - ( Ii- l,j,kl (8.2) 

‘t( Ji.1.k = $ C( )i+ 1j2,j.k - ( )i- l/2, j,kl. (8.3) 

The continuity equation (2) is discretized using three-point 
central finite difference approximations. For the sake of 
convenience we define the discrete divergence operator as 

(8.5) 

where Q is the velocity vector, defined in Eq. (3.1), and U, 
V, and Ware the contravariant components of the velocity, 
given in Eq. (3.3). 

Applying the Runge-Kutta scheme [13] to the system 
of the governing equations (2) and (3), we obtain (for 
I = 1, 2, 3, 4): 

DIVCQ~,,~l =O (9) 

Qf,,,, = QTj,k - a/ Ati,j,k RHS:,,:. (10) 

In the above equations, the superscript “n” denotes the time 
step at which the solution is known, while the superscript 
“1” denotes an intermediate time level (or iteration level) 
used to advance the solution from time step ‘W to time step 
“n + 1” (we designate Q’ = Qn for 1 = 0 and Q’ = Q”+ ’ for 
I = 4). For the four-stage scheme, the coefficients a;s are 
a, 3’ 29 i L 1 and 1 for I= 1,2, 3,4 in sequence. The RHS term, in 
Eq. (lo), denotes the discrete approximation of the right- 
hand side of the momentum equations (3) at the node 
(i, j, k): 

+H-J 
aElI1 aE”2 a-%, -__ - ag + all + ag 1 +H,. (10.1) 

Also, Ati,i,k in Eq. (10.1) is the time increment which, for 
reasons w-e discuss later, varies in space (local time 
stepping). For the sake of convenience, however, in the rest 
of our analysis we drop the (i, j, k) subscript. 

The major difficulty associated with the solution of the 

system of the discrete governing equations (9) and (lo), is 
the absence of the time derivative of the pressure from the 
continuity equation (9). Clearly, the continuity equa- 
tion (9) is not an evolution equation, which can be used to 
advance the pressure field in time, but it is rather a 
constraint imposed on the velocity field. However, the 
pressure-whose gradient appears in the right-hand side of 
the momentum equations-serves as the only degree of 
freedom we can use to satisfy the incompressibility con- 
straint. Therefore, we need to replace the discrete continuity 
equation with an equivalent discrete equation for the 
pressure which takes into account the important interaction 
between pressure and velocity fields. On a non-staggered 
grid, such an equation must lead to: (i) smooth solutions for 
the pressure, and (ii) the satisfaction of the discrete con- 
tinuity equation (9), within acceptable numerical accuracy. 

(b) The Pressure-Poisson Equation 

In order to derive an equation for the pressure, let us first 
write out the three scalar momentum equations, implied by 
Eq. (lo), in the form 

where f F j k for example, contains the discrete approxima- 
tions of the convective and viscous terms which appear in 
the <-momentum equation. 

Using Eqs. (ll), along with Eq. (3.3), we can eliminate 
the velocity components, at the “I” level, from the discrete 
continuity equation (9). Doing so, we arrive at the discrete 
pressure equation, 

JACPi,j,kl’pl =~DIv[Qf,j,,l - Joi,,:t (12) 

where 

ALPi,,, = 6, I[ 
$ (g”6, + g126, + g136,) 1 

+h [ $ (g'26, + g226, + g236:)] 
+d, (g136t + g236q + g33h()]} Lpi. j,kl 

(12.1) 
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+b 
At 
-+f'+?rf"+irf') 1 i,J,k 

+6; $(5nf'+rlof"+iaf.')] (12.2) 
i, ,. k 

For reasons which will become apparent in the process of 
our analysis, we decompose the pressure operator, 
Eq. (12.1), into two parts, 

ACpi,j,kl =L[pi,j,kI + NIPi,j,kI, (12.3) 

where L[ ] contains the three orthogonal terms in 
Eq. (7.1)> 

+‘, ($%)} cp,,,,,, (12.4) 

while N[ ] contains the remaining six cross-derivative 
terms, which result from the non-orthogonality of the 
coordinate lines. 

Equation (12) is a second-order, elliptic equation for the 
pressure field which we can use instead of the discrete 
continuity equation (9). Before we proceed any further, 
however, we have to make sure that solving Eqs. (11) and 
(12) is equivalent to solving the original system of Eqs. (11) 
and (9). In other words, will the velocity field, which results 
from the solution of Eqs. (11) and (12), satisfy the discrete 
incompressibility constraint, Eq. (9)? The answer is easy if 
we employ the same arguments used in Ref. [l] for 
Cartesian coordinates. The discrete pressure equation (12) 
is derived from the discrete continuity equation (9) by 
employing the discrete momentum equations (11) at the 
nodes, where they are driven to steady state. Therefore, as 
the solution of Eqs. (11) and (12) approaches a steady state, 
the discrete divergence operator (Eq. (8.5)) approaches 
zero. However, the satisfaction of the discrete incom- 
pressibility constraint is materialized without the computed 
pressure being smooth. To make this point clear, let us write 
out one of the terms appearing in the pressure operator, 
Eq. (12.1), as 

Such a discretization of the pressure operator produces a 
pressure field which suffers from odd-even decoupling 
(checkerboard instability). Therefore, the result of our 
analysis for three-dimensional, curvilinear coordinates is 
similar, as one would expect, to the result obtained in 
Ref. [ 11 for Cartesian coordinates. Namely, on a non- 
staggered grid the system of the discrete equations (11) and 
(12) need not have a smooth solution. As a matter of fact, 
our numerical results indicate that for complex, three- 
dimensional geometries there may not exist a solution at all, 
since the oscillations in the ressure can destabilize the entire 
numerical procedure. Thus, in order to guarantee the 
existence of a smooth solution, for the discrete Navier- 
Stokes equations, we have to set aside the idea of satisfying 
the discrete continuity equation to machine zero [ 1, 31. In 
Ref. [ 1 ] we modified the discrete continuity equation by 
adding to its right-hand side an artificial source term, the 
size of which is the minimum required to guarantee the 
existence of a smooth pressure field. The order of this source 
term is at least equal to the order of the truncation error of 
the finite difference approximations and, thus, it does not 
deteriorate the formal accuracy of the solution. 

To extend our method [l] to generalized curvilinear 
coordinates, we first note that the artificial mass source in 
Cartesian coordinates can be interpreted as the difference 
between the two discrete approximations of the Laplace 
operator for the pressure: the one that results by discretizing 
over 2Ax (invloving the nodes i + 1, i, and i - 1) and the one 
that results by discretizing over 4Ax (involving the nodes 
i + 2, i, and i - 2). Following this interpretation we seek, in 
generalized curvilinear coordinates, to satisfy the discrete 
“continuity” equation, 

DIV[Q;, j,k] = E&? - L)[P;,,:], (14) 

where E is a positive constant (E d l), used to control the size 
of the source term. The operator z is defined in a similar 
fashion as the operator L (see Eq. (12.4)) as 

where 8,, 6”,,, and s’, are given by Eq. (8.4). 
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The source term, in the right-hand side of the discrete 
continuity equation, is proportional to the difference 
between the two discrete approximations of the orthogonal 
part of the pressure operator (see Eqs. (12.3) and (12.4)): 
the one that results by discretizing over 2d< and the one 
that results by discretizing over 445. The reason that we 
include only the orthogonal terms of the pressure operator, 
in the artificial mass source, is that these terms-as numeri- 
cal experiments indicated-are sufficient to guarantee the 
smoothness of the pressure field. Therefore, the inclusion of 
the non-orthogonal terms in the right-hand side of Eq. (14) 
would only contribute to additional error in the discrete 
continuity equation. 

In order to bring the source term in Eq. (14) to a form 
which resembles the source term used in Ref. [ 11, for 
uniform Cartesian coordinates, we use Eqs. (14.1) and (12.4) 
to obtain 

+ AC2 d,[ (q&,)} C&J, (15) 

where 

-2C lijk+ C Ii-1,j.k 6,,[ , = [ ‘l+l,J,k (A5j; . (15.1) 

To derive Eq. (1.5), we used averaging to compute the coef- 
ficients (coefficients inside the derivatives in Eq. (15)) at the 
half-grid nodes, where they are needed for the discretization 
of the 2 operator. As can be seen from Eq. (15) the source 
term is at least second order in the transformed computa- 
tional domain. Therefore, the formal acuracy of the method 
is not deteriorated. Also, it is easy to show that, for uniform 
Cartesian grids, the right-hand side of Eq. (15) becomes 
identical to the source term of Ref. [ 11. 

Using Eq. (14) along with Eq. (12.3) and the momentum 
equations (1 l), we derive the following discrete 
equation: 

(1 -6) L[P&$ + &z[P;,,:] + N[P&$ 

=; DIV[Q;,,] - r&k. 

pressure 

(16) 

The discrete pressure operator (left-hand side of Eq. (4.39)) 
couples together-for sufficiently large values of the E 
parameter-the odd and even nodes of the pressure. This 

can be seen, if we write out a typical term of the pressure 
operator as 

’ Pi-I,j,k 

(k-)~]Pje2j*’ . . (16.1) 

where 

p = g” At/J. (16.2) 

Our numerical experiments indicate that, values of E of the 
order of 0.05 are sufficient to guarantee the existence of a 
smooth pressure field and consequently the stability of the 
numerical procedure (see results and discussion section). 

(b.1) Boundary Conditionsfor the Pressure Equation 

A well-posed boundary value problem, for the elliptic 
pressure equation (16), requires the specification of the 
boundary conditions on all the boundaries of the computa- 
tional domain. However, the specification of a proper set of 
boundary conditions for the pressure is not a trivial task, 
since the system of the governing equations (2) and (3) is 
usually closed with boundary conditions on the velocity 
field. Gresho and Sani [ 181 investigated the problem of the 
pressure boundary conditions and derived the relevant 
pressure equation for nodes near or on the boundary of 
the computational domain. They also proved that “the 
Neumann boundary condition (normal momentum equa- 
tion on the boundary) is always appropriate for the 
pressure-Poisson equation.” 

In this section we derive the relevant discrete pressure 
equation (for the proposed formulation) for grid nodes near 
the boundary of the solution domain and we show a simple 
way to build in the discrete pressure equation (16) all the 
different relevant boundary forms encountered in a three- 
dimensional domain. For that matter, let us consider the 
discrete continuity equation written as 

ui,,- Ufpl +v:.+,--;-, w:+,- w:-, 1 
2At: 241 + 241 

=Tdi,j,k> 
(17) 
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where d is the artificial mass source of Eq. (14). Note that at 
nodes next to the boundary we do not include, in the artili- 
cial source term, terms whose evaluation would require 
nodes outisde the computational domain. For example, 
next to a t = constant boundary we neglect the <-direction 
derivative (see Eq. (15)). 

The general form of the pressure equation which can be 
derived from Eq. (17) and the momentum equations (1 1 ), 
reads as 

V”, J - + 1 v;- 1 1 -- 
2411 24 

x [(At NM”lj+, - (At NW),- 1]‘p’ 

+ 
w:+1- w;-, 1 

241 241 

x [(At NM%+ 1 -(At,vMi),-,,“=fd:l:, (18) 

where NM’, for example, is the normal to a 5 = constant 
surface steady state momentum equation. Let us assume 
now, that a 5 = constant boundary is located at (i - 1, j, k). 
Since boundary conditions are specified on the velocity, the 
t-contravariant component of the velocity is known at 
(i - 1, j, k) for all instants in time: 

u;-1= u;-, = U,&l. (18.1) 

Therefore, in order to derive a pressure equation from the 
discrete continuity equation (17) we do not need to employ 
the momentum equations at (i- 1, j, k) [18]. In other 
words, incorporating Eq. (18.1) in Eq. (17) and using the 
momentum equations for the nodes where the velocity is not 
specified, we obtain 

Ul+ I- Ui- 1 

2At: 
-&(A~NM’);;;+ . . =fd:;:. (18.2) 

In Eq. (18.2) we omitted the v- and c-direction derivative 
terms which remain the same as in Eq. (18). Equa- 
tion (18.2) is the relevant discrete pressure equation for a 
node next to a 5 = constant boundary. In a three-dimen- 
sional domain, there are 24 different boundary forms of the 
discrete pressure equation, the programming of which can 
be quite complicated. However, all the complications can be 
avoided if we note that Eq. (18)--which holds for any 
interior node-reduces automatically to Eq. (18.2)-which 
holds for a node adjacent to a < = constant boundary-if we 
set the time increment At equal to zero at the boundary 
nodes. By doing so, we can program the discrete pressure 

equation (16) (or, equivalently, Eq. (18)) the same way at 
every computational node, adjacent or not to the boundary, 
since the various relevant forms of the pressure equation for 
nodes next to the boundary are recovered automatically. 

To calculate the pressure values at the boundary of the 
solution domain, we employ the normal momentum equa- 
tion [l, 181 (Neumann condition). At a 5 = constant 
boundary, for example, the pressure can be computed from 
the equation 

- g:;,k6[(pi, j,k) + F: j,kl? (19) 

where F5 contains velocity terms. The one-sided derivative, 
in the left-hand side of Eq. (19) is forward/backward for a 
left/right 5 = constant boundary. 

Finally, we can easily show that the compatibility 
condition-which is necessary for a solution to exist-is 
automatically satisfied. The proof is a straightforward 
extensionof the detailed proof we gave in Ref. Cl]. 

(c) Summary of the Numerical Algorithm and 
Convergence Accelaration Techniques 

Assuming that we know the solution at the “n” time level, 
the solution at the “n + 1” time level is obtained through the 
following steps: 

(1) Computef*,fV,andfi(seeEqs. (ll))atthe”l-1” 
stage. 

(2) Compute the right-hand side of the pressure equa- 
tion (16) (see Eqs. (8.5) and (12.2)). 

(3) Solve the pressure equation (16), using the point- 
successive relaxation method, to obtain the pressure field at 
the “I - 1” stage. Since we are interested inthe steady state 
solution, only one iterationis performed on the pressure 
equation. 

(4) Using the already computed f <, f “, and f i terms 
(step (l)), along with the new pressure field (step (3)), 
compute the right-hand side RHS (see Eq. (10.1)) of the 
momentum equations. 

(5) Update the velocity field using Eqs. ( 11). 

For the four-stage Runge-Kutta scheme the steps (1) to (5) 
are repeated for 1 = 1, 2, 3,4, since Q’ = Q” + 1 for 1 = 4. 

As we have already mentioned, the f (, f )I, and f i terms 
contain convective and viscous terms. In order to save 
computational time, the viscous part of the above terms is 
updated only at the first stage of the four-stage procedure 
and kept constant through the subsequent three stages 
[ 151. Also, in the iterative procedure described above 
(steps (1) to (5) for I = 1, 2, 3,4) a total of four iterations is 
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performed on the pressure equation per time step. Numeri- 
cal experimentation showed that updating the pressure only 
once per time step does not affect significantly the con- 
vergence rate of the iterative procedure. Therefore, in order 
to save computational time we chose to update the pressure 
only at the first stage of the four-stage scheme. 

To enhance the convergence rate or the time marching 
procedure we employ the local time stepping technique 
along with implicit residual smoothing. The time increment 
is computed and stored for every node at the beginning of 
the marching procedure as 

where 

ASi,j,k =min(&, a, &). (20) 

In the above equations, CFL is the Courant-Friedrich- 
Lewis number, which is held approximately constant at 
every node in order to maximize the local damping of the 
error. Also, g,, , g,,, and g,, are the components of the 
covariant metric tensor which represent the local arc lengths 
in the t-, q-, and <-directions, respectively. As we discussed 
in the previous section, the time increment is set equal to 
zero everywhere at the boundary nodes in order to facilitate 
the application of the pressure boundary conditions. 

The implicit residual smoothing was first proposed by 
Lerat (see, for example, [19]) for use with the Lax- 
Wendroff scheme and was later adopted by Jameson [14] 
to accelerate the convergence of Runge-Kutta schemes. In 
the present study we apply implicit smoothing only to the 
residual of the momentum equation. More specifically, the 
residual calculated in Eq. (10) is smoothed by the constant 
coefficient implicit operator to define a new residual: 

(1 -~~&~)(1-~,6,,)(1 -E$~~)RHS’=RHS’. (21) 

The constants E(, E,, and E[ are smoothing parameters 
which are of the order of one and their subscripts indicate 
that they can be choosen differently for each spatial direc- 
tion. Equation (21) is solved using the Thomas algorithm 
and the smoothed residual replaces the residual RHS in 
Eq. (10). The implemantation of the implicit residual 
smoothing in the four-stage procedure allows the use of 
much higher CFL numbers and consequently leads to a 
significant accelaration of the convergence rate. 

RESULTS AND DISCUSSION 

To validate the generalized coordinate version of our 
method we apply it to calculate the three-dimensional, tur- 
bulent flow over a ship hull-the parabolic Wigley hull. The 

geometry of the Wigley hull is described in Ref. [20]. In this 
section we describe the calculation procedure and we pre- 
sent a sample of the computed results, without emphasizing 
the physical features of the computed flow. Our main objec- 
tive is to demonstrate the ability of our method to drive the 
discrete divergence equation as close to zero as it can be 
with the computed pressure being smooth. Calculations 
over other more complex ship models, which have been 
already completed, along with a detailed discussion of the 
physics of ship stern and wake flows will be presented in a 
forthcoming publication. 

The physical and computational (transformed) domains 
are depicted in Fig. 2. The upstream and downstream boun- 
daries are located at x/L = 0.5 (midships) and 2, respec- 
tively, while the outer boundary are located at r/L = 0.5, 
where L is the length of the hull. At the inlet of the computa- 
tional domain (ABCD) we specify the velocity components 
from experimental data [ 193. The water surface (ABFEO’), 
the keel plane (DLKGC), and the wake centerplane 
(O'LKE) are symmetry planes and, therefore, we apply 
symmetry conditions there. At the exit plane (EFGK) we set 
the streamwise diffusion to zero, i.e., ut5 = ucc = w5< = 0, 

x= E 

FIG. 2. Physical and computational domains. 
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FIG. 3. Convergence history for the residual of the r-momentum 

while at the outer boundary (BCGF), we set u,,,, = u,,,, = 
W rl~ = 0. Finally, on the hull surface (ADLO’) we apply the 
no-flux and no-slip conditions. 

To generate the computational grid, we set 5 = x [ 10, 2 1 ] 
and specify the desired axial locations of the cross planes. 
Then we generate a two-dimensional mesh in every cross 
plane, using the GRAPE method [22]. We complete the 
three-dimensional grid by connecting the corresponding 
points of every cross plane. We stretch the grid in the axial 
direction (around the end of the stern x/L = l), in the radial 
direction (near the hull surface), and in the girthwise direc- 
tion (near the keel and water surfaces), using the hyperbolic 
tangent distribution function. Calculations are performed 

-7.0 4 
0 1000 2000 3000 4000 5000 

NUMBER OF TIME STEPS 

FIG. 4. Convergence history for the average change, between 
iterations, of the dilation. 

-8 0 
0 

NUMBER OF TIME STEPS 

FIG. 5. Convergence histories for the residual of the (-momentum 
equationon grids I, II, and III. 

on three grids: (i) grid I with 50 x 31 x 16 nodes, (ii) grid II 
with 50 x 41 x 16 nodes, and (iii) with 60 x 41 x 16 nodes in 
the axial, radial, and girthwise directions, respectively. The 
first coordinate surface (q = constant) just off the hull is 
located-almost everywhere-at y ’ < 20 for grid I and 
y+ < 7 for grids II and III. The stretching ratio is kept 
less or equal to 1.3 in all spatial directions and for all the 
three grids. The Reynolds number of the calculations is 
Re = 4.5 x 106, based on L and the freestream velocity. All 
the computed results presented here have been obtained, 
unless otherwise indicated, on grid II. 

The calculations are performed on a CRAY-YMP 
machine and the CPU time per grid node per iteration is 
2 x lop5 s for the unsmoothed. The application of the 
implicit residual smoothing, which requires the solution of 
a scalar tridiagonal system for each one of the velocity com- 
ponents, increases the above time by approximately 10%. 

ut 

FIG. 6. Grid dependence study. 
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FIG. 7. Variation of the pressure coefficient and the friction velocity 
along the waterline. 

For the unsmoothed scheme the maximum CFL number for 
stable calculations is 0.7 while the implementation of the 
implicit residual smoothing (.sg = 0.6, E, = .sy = 0.25) allows 
us to use a CFL number equal to 2.5. The parameter E in 
Eq. (16) is set equal to 0.05 since lower values cause 
instabilities and the solution eventually “blows up.” Also, all 
calculations are performed using an underrelaxation factor 
of 0.5 for the solution of the pressure-Poisson equation. 
Note that we do not make any effort to optimize the 
parameters which determine the convergence characteristics 
of the method, namely the CFL number, the implicit 
smoothing constants, and the underrelaxation parameter 
for the pressure equation. 

The convergence of the Ll-norm of the residual of the 
t-momentum equation (for grid II) is shown in Fig. 3 for 
both unsmoothed and smoothed schemes. As can be seen, 
the unsmoothed scheme converges twice as fast as the 

unsmoothed one. Moreover, the unsmoothed scheme does 
not achieve the level of convergence achieved by the 
smoothed scheme. Clearly, therefore, the implementation of 
the implicit residual smoothing makes the Runge-Kutta 
scheme efficient and very effective in handling “stiff” com- 
putational meshes (meshes with very high aspect ratios) as 
those encountered inturbulent flow calculations. 

The effect of implicit residual smoothing is even more 
impressive in the convergence of the continuity equation. 
Figure 4 shows the convergence of the average, over all the 
grid nodes, change between iterations of the dilation for 
both the smoothed and unsmoothed schemes (grid II). The 
smoothed scheme converges twice as fast as the unsmoothed 
one and yields a steady state average dilation (see Eq. (8.5) 
for the definition of the dilation) of 8 x lop4 in 4000 time 
steps. The unsmoothed scheme in the same number of itera- 
tions yields an average dilation of approximately 5 x lo-‘. 
This difference in the steady state average dilation is due to 
the different levels of convergence of the momentum equa- 
tions. To make this point clear we refer to Eq. (18)-which 
is another form of the pressure-Poisson equation. As it can 
be seen from Eq. (18), at any instant in time the dilation is 
equal to the divergence of the steady state momentum equa- 
tion plus the artificial source term. At steady state the 
dilation is driven, at every node, to the artificial source term 
provided that the three components of the momentum 
equation are fully converged. For the unsmoothed scheme 
the momentum residuals never reach full convergence and 
therefore they contribute to an additional error in the 
dilation. 

As a conclusion we can say that the implicit residual 
smoothing, althoug it is applied only to the momentum 
equations, has a very positive impact on the satisfaction of 
the discrete continuity equation. However, we should note 

- CALC. - Present 
T  EXP. - Sarda 

WIGLEY HULL (Wake Centdine) 

FIG. 8. Variationof the axial velocity component along the wake centerline. 

581/103/2-II 
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FIG. 9. Girthwise variation of the pressure coefficient and the 
skin-friction at X/L = 0.7. 

that both the smoothed and the unsmoothed schemes yield 
very low steady state values of the dilation. 

The convergence curves for the L l-norm of the (-momen- 
tum equation on grids I, II and III are shown in Fig. 5. The 
linearity of all three convergence curves indicates that, for 
all the three grids tested, the method converges almost 
exponentially. Figure 6 shows the variation of the pressure 
coefficient (C, = 2P) and the friction velocity U, along the 
waterline, for grids I, II, and III. Clearly, the two liner grids 
(II and III) produce identical results. The solution on the 
coarse grid, on the other hand, shows some departure from 
the other two-particularly as far as the friction velocity dis- 
tribution is concerned-presumably due to the inadequate 
resolution of the near wall region. Recall that on grid I the 
first coordinate surface just off the wall is located at y+ < 20, 
almost everywhere, which apparently is not sufficient to 
capture the near wall steep gradients of the turbulent 
boundary layer. 

The computed variations of the pressure coefficient and 
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FIG. 10. Girthwise variation of the pressure coefficient and the 
skin-friction at X/L = 0.9. 
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FIG. 11. Girthwise variation of the pressure coefficient and the 
skin-friction at X/L = 0.95. 

the friction velocity along the waterline are compared, in 
Fig. 7, with the experimental data of Sarda 1201 and 
Watmuff and Joubert [21]. The predicted pressure coef- 
ficient agrees well with both sets of experimental data up to 
x/L = 0.9. Beyond this point the calculations follow the 
measurements of Watmuff and Joubert, since Sarda’s 
measurements predict smaller pressure gradients in the 
stern region. As pointed out in Ref. [21], this difference 
between the two sets of data could be due to the fact that 
Sarda’s model was not precisely the same as the mathemati- 
cal one-his being thicker in the stern region. The computed 
variation of the friction velocity along the waterline is, also, 
in very good agreement with the experimental data. Note 
that the calculations capture accurately the continuous 
thickening of the boundary layer-implied by the 
decreasing friction velocity-as the stern is approached. 

Figure 8 shows the variation of the axial velocity com- 
ponents along the wake centerline (line O'E in Fig. 2). As 
can be seen, our calculations underpredict somewhat the 

- - - CAL..Cf 

- CAL..cp 

A EXP-Cf 

FIG. 12. Girthwise variation of the pressure coefficient and the 
skin-friction at X/L = 0.997. 
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FIG. 13. Contours of constant Cp on the surface of the hull surface. 

growth of the wake. This can be attributed to the inade- be seen in Fig. 10, the girthwise variation of the pressure 
quacy of the turbulence modelling to descride accurately the and skin-friction is small at x/L = 0.7. However, as the stern 
evolution of a three-dimensional wake. is approached-Fig. 11 to 12-the pressure increases from 

Figures 9 to 12 depict the variation of the pressure coef- the keel to the waterline and so does the boundary layer 
ficient and the skin-friction (Cr= 224:) in the girthwise direc- thickness, as indicated by the decreasing skin-friction. To 
tion. In all the above figures G denotes the girthwise arc demonstrate the ability of the proposed method to produce 
length of the cross section, measured from the keel. As can a smooth pressure field on non-staggered computational 
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FIG. 14. Contours of constant Cp in the trasverse section X/L = 0.9. 
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FIG. 15. Contours of constant Cp in the trasverse section X/L = 0.95. 

meshes, we show in Fig. 13, 14, 15, and 16 the calculated Stokes equations in generalized curvilinear coordinates on 
contours of constant pressure on the surface of the hull as non-staggered grids. Through numerical experimentation 
well as in several cross-sectional planes. we showed that the method produces small values for the 

discrete dilation with the computed pressure being smooth. 
CONCLUSIONS We applied the method to calculate the three-dimensional, 

We presented an accurate and efficient primitive variable turbulent flow field over a ship model. The computed results 
method for the solution of the Reynolds averaged Navier- are in very good agreement with the experimental data. 

0.050 0.100 0.150 0.200 

Y 
FIG. 16. Contours of constant Cp in the trasverse section X/L = 1.002. 
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